- Teresa Lunt, PM DARPA/ITO, Sponsor
- Howie Shrobe, PM, DARPA/ITO
- Hilarie Orman, PM, DARPA/ITO
- Karl Levitt, UC Davis, Chair

- Problem Description / Technical Scope
 - Survivable systems: How to
 - design
 - build
 - validate
 - deploy

- Relevant Disciplines:
- fault tolerance
- network management
- multi-agent planning
- safety engineering
- software engineering
- economics
- testing, specification
- statistical analysis

- Relevant Disciplines
- risk management
- alarm correlation
- distributed system design
- immunology
- security
- control systems

- Relevant Technologies
- statistical anomaly detection
- autodiscovery, alarm correlation
- space-time adaptive processing to pick targets out of clutters
- configuration states
- network management
- hot swappable recovery techniques

- Major Technical Challenges
- Guaranteeing some level of service during attack
- Collaboration between detection/response
- Coordination among distributed survivable agents
- technologies for quantifiable, predictable survivability, e.g. replication
- Understanding and quantifying recovery, different paradigms for recover, what are the issues
- taxonomy of failures and recovery
- immunized recovery

- Major Technical Challenges
- new vulnerablities from mobile systems
- survivability issues in new technology
- adaptive response to faults of different types
- fail fast
- unknown attacks
- Complexity
- Distributed, coordinated attacks

- Major Technical Challenges
- Theoretical basis for faults other than h/w faults
- Probablistic guarantee of service without having a hard core
- Acceptance of survivability solutions
- Cooperation across domains
- Denial of service

Addressing the Challenges

- Approach
 - Design Methodology
 - Knowledge Acquisition/ Presentation
 - Systems Concepts
 - Performance Eval/Validation
 - Application Testbeds

WG#16: Surviving Intrusions in Large-Scale Systems Design Methodologies for Survivability Technology

- Proactive detection and distribution
 - Continuously learn from antigens and pass through the network
- Combine multiple technologies
 - multiple defenses
- Adaptability for rapid recovery
 - Self-repairing functions
- Guaranteeable network characteristics
 - reasonable environment for survivability

WG#16: Surviving Intrusions in Large-Scale Systems Design Methodologies for Survivability Technology

- Response to attacks and attackers
 - eradicate the antigen
- Extend network management, QoS metrics
 - meet the survival goal of the species
 - competing species
- Defenses against insiders
 - auto-immune disease
- Peaceful coexistence with other networks
 - move the tribe

WG#16: Surviving Intrusions in Large-Scale Systems Knowledge Acquisition and Presentation

- What to measure, what to learn
 - at what resolution
 - where in the network layer
- Modeling of network architecture, services
 - to understand normalcy
- Predictive attack generation
- Continuous learning of profiles
- Visualization, HCI

Systems Concepts

- Adaptable network components for rapic and remote "swap in" capability:
 - sensors
 - analysis systems
 - response systems

WG#16: Surviving Intrusions in Large-Scale Systems Performance and Validation

- What, how, where, to measure network state
- Red teams and stress tests
- Quantification of losses, rapidity of change, number of successful prosecutions

WG#16: Surviving Intrusions in Large-Scale Systems Application Testbeds

- Power grid
 - new, emergent industry changes
- Financial
 - years of experience
 - global reach
- Phone
- Industry incentives to deploy

- Design methodology
- Specific services that should be added in for survivability (analogous to authentication for secure systems) for various levels of survivability
- Survivability metrics
- Validation methodology
- New automated recovery techniques
- Operational worldwide networks
- Experiments on DARPA's testbeds

Outcome (cont)

- Immunization mechanisms, immune system response
 - Generalize from what you know, when you see you've been damaged, then customize a defense
 - Genetic algorithms to generate new attacks from old ones
 - Beware of auto-immune disease
- Circuit breakers
- Attack libraries development
- Exchange of profiles, hot lists

Outcome (cont)

- Attack libraries development
- Exchange of profiles, hot lists
- Exchange of info on detected attacks: some signature, problem profile or indicators, or even vaccination (careful not to cause more harm)
- need facility for proof of safety and efficacy of vaccines: FDA
- Better personal hygiene

WG#16: Surviving Intrusions in Large-Scale Systems Likelihood of Success

- Expect the unexpected
- We're never done; new technologies introducte new vulnerabilities, and we keep discovering new vulnerabilities in old technologies

WG#16: Surviving Intrusions in Large-Scale Systems Programmatics

- Scale of effort: BIG
 - National security problems, global, financial
- Why DARPA? Long-term high-risk research, others aren't doing it, and DoD has the problem. Provides leverage to various industries to facilitate transition to commercialization or commercial use
- Other collaborators: CIA, NSA, power, FAA, FBI, telcos, financial community, commerce
- What if we don't do this: we will be at risk with or will not be able to take advantage of new technologies.
 E.g. e-commerce

1996 DARPA ITO General PI Meeting, Dallas, TX

Report Summary

- Problem Description / Technical Scope
 - detection of large-scale coordinated attacks
 - domino effects, side effects
 - predict choke points where an enemy would attack
 - what will be attacked: network or apps?

1996 DARPA ITO General PI Meeting, Dallas, TX

- Problem Description / Technical Scope
 - detection across global networks
 - being able to detect what kind of attack is going on
 - latent attacks, that could perhaps coordinate themselves
 - how to do anomaly detection in a crisis

Report Summary

- Problem Description / Technical Scope
 - correlation
 - how to reserve enough bandwidth for critical apps
 - multilevel availability
 - design in dependability to infrastructure systems
 - bound losses

1996 DARPA ITO General PI Meeting, Dallas, TX

Projected Outcome

- Outcome 1
 - details / examples / justification
 - expected likelihood of success
- Outcome 2
 - details / examples / justification
 - expected likelihood of success

•

Investment Strategy

- DARPA, Industry Support
 - Why DARPA?
 - DoD impact
 - Infrastructure protetion
 - What other collaborations?
 - NSA, CIA, FBI, FAA, AFIWC
 - Financial community
 - Telcos, power utilities
- What if we did not do this?

Other Issues Addressed

- What if we did not do this?
 - Nat'l vulnerabilities
 - No new emerging technology
- Optimal Scale of Efforts
 - small vs large? mix?
 - significant growth potential